Counting Composites
نویسندگان
چکیده
I defend the thesis that Composition Entails Identity (CEI): is, a whole is identical to all of its parts, taken together. CEI seems be inconsistent, since it require parts possess incompatible number properties (for instance, being one thing and many things). show these are, in fact, compatible.
منابع مشابه
On Counting Polynomials of Some Nanostructures
The Omega polynomial(x) was recently proposed by Diudea, based on the length of strips in given graph G. The Sadhana polynomial has been defined to evaluate the Sadhana index of a molecular graph. The PI polynomial is another molecular descriptor. In this paper we compute these three polynomials for some infinite classes of nanostructures.
متن کاملCurve Counting and Instanton Counting
Intuitively, in four-dimensional gauge theories one counts instantons, and in twodimensional string theory one counts holomorphic curves. These correspond to the instanton counting and curve counting in the title. There is no obvious connection between them, but a remarkable physical idea called geometric engineering [9, 10, 11] dictates that they are indeed related. More precisely, the generat...
متن کاملRegion Counting Distances and Region Counting Circles
The region counting distances, introduced by Demaine, Iacono and Langerman [5], associate to any pair of points p, q the number of items of a dataset S contained in a region R(p, q) surrounding p, q. We define region counting disks and circles, and study the complexity of these objects. In particular, we prove that for some wide class of regions R(p, q), the complexity of a region counting circ...
متن کاملCOUNTING DISTINCT FUZZY SUBGROUPS OF SOME RANK-3 ABELIAN GROUPS
In this paper we classify fuzzy subgroups of a rank-3 abelian group $G = mathbb{Z}_{p^n} + mathbb{Z}_p + mathbb{Z}_p$ for any fixed prime $p$ and any positive integer $n$, using a natural equivalence relation given in cite{mur:01}. We present and prove explicit polynomial formulae for the number of (i) subgroups, (ii) maximal chains of subgroups, (iii) distinct fuzzy subgroups, (iv) non-isomorp...
متن کاملCounting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Australasian Journal of Philosophy
سال: 2021
ISSN: ['1471-6828', '1470-6828', '0004-8402']
DOI: https://doi.org/10.1080/00048402.2021.1938617